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The response of particles trapped in one-dimensional resonance islands to betatron tune mod-
ulation resembles, yet is not equivalent to, that of a parametric resonant system. Experimental
data obtained at Indiana University Cyclotron Facility for the fourth-order resonance islands have
confirmed this characteristic feature. The beam, driven by betatron tune modulation, was observed
to travel from near the center of resonance islands toward the separatrix. The experimental data
are characterized by the onset of a large response at a critical modulation amplitude and frequency,
which are compared with theoretical models. Possible future experiments are suggested.

PACS number(s): 41.85.—p, 05.45.+b, 29.20.Dh

I. INTRODUCTION

Enhanced particle diffusion in a dynamical system due
to a time dependent driving force has long been recog-
nized [1]. This problem is particularly important to high
energy colliders and high brightness storage rings, where
the time dependent components usually play a key role
in determining the dynamical aperture and particle sta-
bility. The time dependent driving components in high
energy storage rings can be divided into dipole field mod-
ulation and quadrupole field modulation. The dipole field
modulation can arise from ground vibration or current
ripple in dipoles. Similarly, the quadrupole field modu-
lation can come from current ripple in quadrupoles, syn-
chrotron motion with nonzero chromaticities, and/or the
feed down of sextupoles resulting from ground vibrations
etc. In the past we have studied the effects of longi-
tudinal beam dynamics due to dipole field modulation
and/or rf acceleration field modulation [2-5]. This pa-
per studies specifically transverse beam dynamics due to
the betatron tune modulation, which was generated by
modulating the current supplied to a quadrupole. We
study, in particular, effects of tune modulation on par-
ticles trapped in resonance islands. Such a tune modu-
lation would generate regions of stochastic layers in the
phase space of otherwise invariant tori. These stochastic
layers may cause an enhanced diffusion rate.

Many theoretical and numerical particle tracking stud-
ies [6,7] have investigated the effects of betatron tune
modulation. It was recognized that the effect of tune
modulation on particles trapped in resonance islands is
equivalent to a system of a physical pendulum with phase
modulation [1]. Reference [6] obtained the condition of
chaos from the particular solution of the linearized pen-
dulum equation. However, the linear superposition is
known to break down near the region of the island res-
onance frequency [4], where the nonlinearity plays an
important role in the dynamics. Alternatively, Ref. [7]
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defined the width of the stochastic layer as the relative
deviation of the Hamiltonian value from separatrix orbit.
The change of relative energy deviation, calculated along
the separatrix orbit for a half period of the time depen-
dent perturbation, is a function of the phase angle of the
particle relative to the time dependent driving potential.
On the other hand, the phase angle depends, in turn, on
the relative energy change. The stability of the coupled
equations is then used to obtain the critical width of the
stochastic layer. In particular, the width of the stochastic
layer is found to be maximum when the modulation fre-
quency is equal to about 1.35 times the island frequency
at a constant modulation amplitude. Numerical simula-
tions in Ref. [7] seem to confirm that tori of the resonance
Hamiltonian are strongly affected around that modula-
tion frequency at a constant modulation amplitude. Ex-
perimental confirmation of these different approaches is
therefore needed. These experiments also offer a unique
opportunity to check various theoretical models in the
study of long term stability for particle beams in circular
accelerators.

In the past, there were several experiments on effects
of betatron tune modulation [8,9]. However, these tune
modulation experiments were not able to track single par-
ticle motion in the Hamiltonian system. In the CERN
experiments [8], lifetime of the beam was measured as a
function of the tune modulation amplitude at a combi-
nation of modulation frequencies of 9 Hz, 40 Hz, and 180
Hz. These modulation frequencies were chosen to sample
regions of interest. On the other hand, the range of mod-
ulation frequencies was chosen near the resonance island
frequency for the Fermilab experiment [9]. However, be-
cause of the small island size, only the rate of decoherence
as a function of the modulation frequency for the beam
captured in the island was measured. Tracking single
particle motion inside an island could not be performed.
To understand single particle dynamics, it is important
to be able to follow the trajectory of a single particle in
the dynamical system.
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To measure a single particle motion, small beam emit-
tance is needed. In this respect, the Indiana University
Cyclotron Facility (IUCF) cooler ring provides an ideal
environment for nonlinear beam dynamics experiments.
The 95% emittance, or phase space area, of the proton
beam is electron cooled to about 0.3 7 mm mrad in less
than 3 s. The resulting relative momentum spread full
width at half maximum, FWHM, of the beam is about
0.0001. Such a high quality beam bunch can closely sim-
ulate single particle motion shown evidently in our earlier
experimental results [2-5].

This paper reports results of experiments performed
at the IUCF cooler ring on the effect of tune modulation
for particles trapped in resonance islands. We organize
this paper as follows. Section II discusses Hamilton’s
equation of motion in the presence of tune modulation
for particles trapped in resonance islands of 1 degree of
freedom [one dimension (1D)]. Section III discusses the
experimental procedure and presents experimental data.
Conclusions are given in Sec. IV.

II. THE EQUATION OF MOTION
IN THE PRESENCE OF TUNE MODULATION

The Hamiltonian in the action-angle variables in a re-
gion dominated by a single resonance (mv = {) is given
by

H=VJ+%an+gJ%cos(m¢—€0+x)+--~, (1)

where J and ¢ are the conjugate action-angle variables
for the betatron oscillations, 8 is the orbital angle serv-
ing for the time coordinate, v is the betatron tune (either
horizontal or vertical),  is the nonlinear betatron detun-
ing parameter arising from higher-order multipoles, g and
x are the resonance strength and phase at the 1D non-
linear resonance myr = £ with integral m, ¢, and n > m.
For particles with small actions, the term with n = m
dominates the dynamics [10]. Hereafter, we consider the
Hamiltonian with n = m only.
Using the generating function,

R=(o-mo+ X)L 2)

we transform the coordinate system into the resonance
rotating frame where the new action-angle coordinates
are given by I = J and ¥ = ¢ — 7—%9 + X%. The new
Hamiltonian becomes

H =4I+ %alzﬁ-gl% cosmp. (3)

Here § = v — ﬁ is the proximity of the betatron tune to
the resonance line. The transformed Hamiltonian is time
independent and is a constant of motion. A torus corre-
sponds to the Hamiltonian flow at a constant “energy,”
ie.,, H{I,y) = E.

This simple single resonance dominated Hamiltonian
has been verified experimentally [11,12] for the third- and

the fourth-order resonances by comparing the measured
Poincaré maps with tori of the Hamiltonian. Hamilton’s
equations of motion are given by

I =mglI7 sinmy, (4)
Yp=6+al+ %gl%_lcosmd), (5)

where the dot represents the derivative taken with re-
spect to the orbital angle §. The fixed points (If,%y) of
the Hamiltonian are given by

sinmy; =0 and 5+aIfﬂ:%ng%_1:0, (6)

Thus the fixed points are local extrema of the Hamilto-
nian along a line of constant ¥, i.e.,

0
5-1—E =0.

sinmyp=0

The unstable fixed point (UFP) corresponds to a saddle
point on the energy surface, while the stable fixed point
(SFP) corresponds to a local extremum.

In particle accelerators, the betatron tunes may be
time dependent due to quadrupole current supply rip-
ple. With a small tune modulation, the parameters «
and g do not vary appreciably. The equation for the
phase oscillations becomes

Ym + G sin,, = md, (7)

where 1, = mi signifies the island phase angle and G
is the spring constant for the phase oscillation given by

3 2
G:mTEgI%_Z—{—mT(m—-QagI%. (8)

Thus the phase oscillations generally resemble the phys-
ical pendulum equation. However, when m # 4, the
spring constant G depends on the action, which is time
dependent. In fact G is not necessarily positive definite
in the entire region of a torus. In the linearized approx-
imation, i.e., sint,, = ¥,,, the island tune is given by
“Uisland” = VG. We sometimes loosely use VG as the
“island tune.” The actual island tune Uiganqg, of a given
torus can be obtained from solving Hamilton’s equations
of motion, i.e.,

. o ){ dI -1
Visland = m
land (gzl"‘—[E—JI—- %aIZP)l/Z

9)

Since the spring constant is not necessarily a constant,
the phase oscillation may not be uniform within a torus
of the Hamiltonian flow. The phase oscillation of Eq. (7)
with the addition of tune modulation resembles, but is
not equivalent to, the pendulum equation with phase
modulation. The difference is that the spring constant
depends also on the amplitude. Thus the effect of tune
modulation on the island motion will depend critically on
resonance parameters. This effect was not considered in
earlier theoretical analyses [6,7]. Nevertheless, the island
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tune for small amplitude oscillations of Eq. (9) becomes
sland = — [2mEsppglip. — 4)agId /2. (10
Visland = 5 [2mEsppglspp” + (m — 4)aglgrp]/*. (10)

An accidental cancellation occurs at the fourth order
resonance with the result that the island tune is given
by Vistand = vV32Eg, which is constant for a given torus.
Since the energy F is an extremum at the SFP, the island
tune will be largest at the SFP. In the following, we will
discuss two low-order resonances.

A. The third-order resonance

At the third-order resonance with m = 3, fixed points
of the Hamiltonian are given by

Fi9+4/(39)% — 4as
=t 2 : (11)

f 2a

It is clear that the third-order resonance fixed points exist
when the condition

> Sad (12)

is satisfied. We obtain therefore

2 219l +4/(39)* —4ad
SFP — 2|al ’

(13)

UFP — 2!0!

Note here that if ad > 0, then the SFP and UFP are
located on the same betatron phase angle, i.e., ¥spp =
Yyrp. On the other hand, if ad < 0, then the betatron
phase angles of the SFP and the UFP differ by 60°, i.e.,
Ysrp = YPurp £ 5. The energy at the fixed point is
given by Ef = 18Iy — gal?, where I; is either Ispp or
Iyrp, and the corresponding small amplitude island tune
becomes vZ,, 4 = 29vTIsrp(§ — alsrp). An illustrative

ht
example is given in the Appendix.

B. The fourth-order resonance

The equation for phase oscillation at the fourth-order
resonance with m = 4 has a particularly simple feature.
Assuming a > 0, the fixed points are given by

6 é

% Iypp=-———o 14
a—2[g] “UFPT Tat2gl (14)

Ispp = —

and the corresponding “energies” at these fixed points
are

52 52

Espp = —5———, EurP = —5——-

2(a —2|g]) 2(c +2|g])

Note here that the fourth-order resonance island exists

only when both the conditions aé < 0 and a > 2|g| are

satisfied. When the resonance strength |g| is larger than

%|a|, the SFP of the fourth-order resonance island goes

to infinity, while the UFP’s are still given by Eq. (14).
Similar results can be arrived at for a < 0.

The small amplitude island tune becomes

(15)

lg]

Visland = 4[4 a2

(16)

Since the equation of motion for the betatron phase is
given by

12;4 + 32Egsiny4 = 0,

the island tune for a torus around the resonance island
will depend on two factors: (1) the energy factor E, which
is a constant for a given torus, and (2) the amplitude of
the synchrotronlike motion. In other words, the phase os-
cillation of the fourth-order resonance is “equivalent” to
that of synchrotron motion. When the betatron tune is
modulated, the equation of motion for particles trapped
in the island becomes a parametric resonance equation
with phase modulation [Eq. (7)]. The response of a sys-
tem having such an equation of motion exhibits bifurca-
tion when the modulation frequency lies below the crit-
ical frequency. Such a system has recently been studied
extensively for synchrotron motion [2—4].

The separatrix (the torus passing through the UFP)
separates the island motion from tori inside and outside.
The minimum and maximum actions of the separatrix
are given by

lg|
Iy = I 1+21/—— ,
1 = Ispp ( o+ 2[g]
Ixo = Isfp [1—2 gl _ .
a+ 2|g|

It is interesting to note that the average of the maxi-
mum and minimum actions of the separatrix is equal to
the action of the SFP. The island width is given by

| lgl
AT = Iy — Ixe = 41, —_— 18
sx1 x2 SFP a+ 2‘g| ( )

III. EXPERIMENTAL PROCEDURE
AND RESULTS

The IUCF cooler ring is hexagonal with a circumfer-
ence of 86.8 m. The experiment started with a 90 MeV
H7 beam strip injected, stored, and cooled in a 10 s cy-
cle resulting in a 45 MeV proton beam. The stored beam
consisted of a single bunch, typically with 3 x 108 protons
and a bunch length of about 5.4 m (or 60 ns) FWHM for
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this experiment. The revolution period in the accelera-
tor was 969 ns with bunching produced by operating a
rf cavity with frequency fo = 1.03168 MHz at harmonic
number h = 1.

Before making a measurement, the injected beam was
electron cooled for about 3 s. The stability of the hori-
zontal closed orbit was measured to be better than 0.05
mm FWHM. The beam was then kicked with various
angular deflections 0k, with a pulsed deflecting magnet
having a time width of 600 ns FWHM, and rise and fall
times of 100 ns. The kick occurred in conjunction with a
triple coincidence among a signal from the data acquisi-
tion system, the rf system which was providing the beam
bunching, and a 7 s delay from the beginning of the injec-
tion cycle. Details of our experimental setup have been
previously published [11].

Once perturbed by the kicker, the beam executed co-
herent betatron motion and sampled existing field nonlin-
earities in the synchrotron. The Poincaré map in (z-p.)
phase space was obtained by measuring the horizontal
position deviations from the closed orbit at two differ-
ent positions [11]. The transverse electron cooling time
was typically about 1 s or 10 revolutions, which had a
very small effect within the time of a measurement (4096
revolutions [13]). Nevertheless it was turned off 20 ms
before the beam was kicked in order to avoid damping of
the betatron oscillations.

In our earlier experiments [11], we found that the
SFP’s for the third-order resonance were located outside
the dynamical aperture of the cooler ring. On the other
hand, the properties of the fourth-order resonance island
were successfully explored [12], we chose to study the
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effect of tune modulation for the beam trapped in the
fourth-order resonance island. The horizontal betatron
tune was chosen close to the fourth-order resonance con-
dition, v, = 3.75. The linear coupling between the hor-
izontal and vertical betatron motion was corrected by a
pair of skew quadrupoles [11,12,14]. A horizontal kicker
was pulsed to kick the bunch into the center of the reso-
nance island. Almost 100% of the particles in the bunch
were trapped inside the island. After the kick, the power
supply for a quadrupole was modulated sinusoidally [15].
The droop of the modulation quadrupole gradient as a
function of modulation frequency due to the skin effect
of the vacuum chamber was measured and compensated
for up to about 3 kHz [15]. With tune modulation, the
betatron tune was given by

v =1 + gsinv,,b, (19)

where the modulation amplitude g varied from 0.000 25
to 0.001.

With the rf phase feedback loop turned on, the
momentum-deviation amplitude of the bunched beam co-
herent synchrotron oscillation has been measured to be
less than 1 x 10°. Combining with the measured hori-
zontal chromaticity of about -8, the betatron tune mod-
ulation due to the coherent synchrotron oscillation of the
bunch was about 8 x 10~5 at the synchrotron frequency of
about 200 Hz. The FWHM incoherent momentum spread

of the bunch was about (9-2) ~ 8.5 x 107°, thus
. Po /FWHM
the incoherent tune modulation due to the momentum

spread of the beam was about 7x10~* at the synchrotron
frequency of 200 Hz. Since the synchrotron frequency
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FIG. 1. The fourth-order resonance island motion without tune modulation is shown in the left column (a), where the top
graph shows the Poincaré map for a beam bunch trapped in the fourth-order 1D resonance island, the middle graph shows

the betatron phase oscillations of ¥4 = 49 of an island, and

the bottom graph shows the FFT of the position coordinate.

The effects of island motion due to tune modulation at the modulation frequencies of 1545 Hz and 2570 Hz at the modulation
amplitude of ¢ = 0.00086 are shown in (b) and (c) columns, respectively.
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was chosen to be much smaller than the resonance island
frequency, the effect of tune modulation due to the syn-
chrotron oscillation and the finite chromaticity on parti-
cles trapped in the fourth-order resonance islands should
be negligible.

A. Poincaré maps and the resonance Hamiltonian

Figure 1(a) in the left column shows (1) the Poincaré
map in (z, p,) phase space for 3584 orbital revolutions at
the top, (2) the betatron phase 14 of one of the islands as
a function of the island turns (the number of orbital rev-
olutions divided by the number of islands) in the middle,
and (3) the fast Fourier transform (FFT) of the betatron
oscillations at the bottom, for the beam bunch trapped
in the fourth-order resonance islands without applying
betatron tune modulation. The data points located at
the origin of the Poincaré map in Fig. 1(a) correspond
to beam bunch positions prior to the coherent betatron
kick. From the bottom frame of Fig. 1(a), the island
tune is observed as a sideband of the betatron tune to
be Viglana = 0.00263 + 0.0003 or the island frequency
fislanda = 2720 Hz. This means that our data acquisition
system [13] was able to sample about nine island oscil-
lations clearly visible from the middle part of Fig. 1(a).
Because the synchrotron tune was much smaller than the
island tune, the data indicated that the effect of the nat-
ural tune modulation due to a finite chromaticity and the
synchrotron oscillation of the beam bunch was small.

Figure 1(b) shows similar data for the bunch mo-
tion with forced tune modulation at the modulation fre-
quency, f,, = 1545 Hz and ¢ = 0.00086, where 2000
orbital revolutions are plotted in the Poincaré map. Fig-
ure 1(c) shows data at f,, = 2570 Hz and ¢ = 0.000 86,
where 1000 orbital revolutions are plotted in the Poincaré
map.
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FIG. 2. The Poincaré map in action-angle variables for the
bunch trapped in fourth-order resonance islands under the ex-
ternal betatron tune modulation at the modulation frequency
of 2570 Hz for the same data as that shown in Fig. 1(c). Note
here that the particle is driven out of the island onto the
separatrix of the resonance Hamiltonian in about 640 orbital
revolutions.

At a relatively large tune modulation amplitude of
g = 0.00086, Figs. 1(b) and 1(c) show that the parti-
cle motion in the island was strongly perturbed. When
the modulation frequency was 1545 Hz, the bunch was
driven out of the island in about 700 island turns, or 2800
orbital revolutions. The phase oscillations of 14, shown
in the middle of Fig. 1(b), exhibit an interesting beating
oscillation similar to that observed for synchrotron mo-
tion with rf phase modulation [3,4]. At the modulation
frequency of 2570 Hz, the bunch was driven out of the is-
land in about 160 island turns or 640 orbital revolutions
and traveled along the separatrix of these islands.

Transforming the normalized phase space coordinates
into the action-angle variables [11] for the modulation
frequency at 2570 Hz, Fig. 2 shows that the beam bunch
moves from a nearly center position in resonance islands
to a trajectory along the separatrix. The maximum and
minimum actions of the separatrix and the actions of the
SFP and UFP are thus determined to be

I;x1 = 3.7+ 0.2 " mmmrad,
I;xo = 1.1 £ 0.2 7 mm mrad,
Ispp = 2.4 + 0.2 7 mm mrad,

Iyrpp = 1.5 £ 0.2 # mm mrad.

Using Egs. (16) and (17), parameters for the resonance
Hamiltonian can be obtained as

a=1.0x 1073 (7 mm mrad) !,
g=-9.8x10"° (mmmmrad) !,
§=-19x10">

x = 0.75 rad, (20)

These parameters are found to be consistent with the
Iyrp of Eq. (14). An overall sign for the Hamiltonian
is not determined from this method unless the nonlinear
detuning parameter o is measured. The actual overall
sign in the Hamiltonian is, however, not important with
regards to the dynamics in the presence of tune modula-
tion.

B. Beam response due to tune modulation

When the betatron tune is externally modulated, the
equation of motion for the island phase is given by

ha + V2 1ana SID s = V2 acosvp,b, (21)
where 14 = 4%, and a is the effective phase modulation
amplitude [4] given by

4q
a=—. 22
(22)

Since the greatest effect on particle motion would occur
at a resonance condition, when the modulation tune was

near the island tune, the effective phase modulation am-
plitude a would be greatly enhanced at a smaller island
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tune. The numerical simulations with ¢ = 0.002 reported
in Ref. [7] and the experiment with ¢ = 2.04 x 10~*
reported in Ref. [9] corresponded to an effective phase
modulation amplitude of a = 0.16. The effective phase
modulation amplitude in our system is enhanced by a
factor of about 20 in comparison with that of Ref. [7],
where the island tune used in numerical simulations is
about 0.05. This means that our system is much more
sensitive to the tune modulation than that of Ref. [7].

Using parameters obtained from the preceding section
for the Hamiltonian, we found that vigang = 4v/2Eg var-
ied between 0.0026 and 0.0021 depending on the energies
of the corresponding tori in the resonance island width.
For a given torus at the maximum phase amplitude Va,
the actual island tune Jigjang is given by

TVisland
T
2K (sin® ¥2)

Visland =

where K is the complete elliptical integral of the first
kind. Since the vjganq4 does not vary appreciably within
the island width, Eq. (21) is equivalent to the parametric
resonance equation with phase modulation [3,4].

When the modulation frequency is far away from the
resonant frequency, the solution of the forced pendulum
equation of Eq. (21) is given by a linear superposition
of the particular and the general solutions resulting in a
beat tune of |Vy, — Pisland|- The phase oscillation of 4,
shown in the middle of Fig. 1(b), exhibited this beating
feature for about 900 orbital revolutions, or 225 island
turns. The reason that the beating of the phase oscilla-
tion in the transverse resonance motion with tune mod-
ulation does not persist for a long time is due to a very
large equivalent phase modulation amplitude. The re-
sulting response amplitude becomes too large to be con-
fined inside the resonance island.

At the modulation amplitude of ¢ = 0.000 86, the cor-
responding phase modulation amplitude is a = 1.3. Nu-
merical simulations of single particle synchrotron motion
with rf phase modulation indicated that particles could
be driven out of the rf bucket at a modulation amplitude
of a =~ 0.1 if the separatrix of the modulation Hamilto-
nian passed through the initial phase space coordinates of
the trapped particles [4]. This means that particles can
be driven out of the resonance island if the modulation
frequency is exactly at the bifurcation frequency with a
modulation amplitude greater than 6. x 10~°. A word
of caution is that only coherent motion of the beam can
be measured, i.e., the measured data correspond to the
centroid of the beam charge distribution, therefore the
measured tolerable modulation amplitude may be differ-
ent from that predicted by the single particle dynamics.

To characterize the response of a strong phase mod-
ulation, we define the critical number of revolutions NV,
as the number of revolutions required for the bunch to
escape the island. Figure 3 shows Nic vs the modulation
frequency f,, = vmfo with ¢ = 0.00086. The error bar
reflects both the uncertainty in determining the number
of revolutions that the particle stays inside the island and
the range of variations in N, for different experimental
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FIG. 3. The response Flc" where N, is the number of orbital
revolutions that the particle stays inside resonance islands,
is plotted as a function of the modulation frequency at the
modulation amplitude of ¢ = 0.00086. Note here that the
error bar is much larger in the transition frequency region,
where N, varied wildly in different runs. This reflected the
fact that N. depended sensitively on the initial condition. The
error bars are too large to identify subharmonic excitations.

runs. A larger error bar could indicate that the result de-
pended very much on the initial beam conditions. At low
modulation frequencies, an apparent increase in response
seems to occur for f,, > f. = 1200+ 200 Hz. At the high
modulation frequency end, the response continues to be
large up to our system limitation of 3 kHz. Thus the re-
sponse function has the characteristic of the parametric
resonance system [3,4]. Unfortunately, our modulation
system was limited to 3 kHz due to the vacuum cham-
ber thickness and the limitation of our modulation power
supply.

Figure 4 shows K}Z as a function of the modulation
amplitude ¢ at the modulation frequency of f,, = 1545
Hz. Here a strong response seems to occur at ¢ > g. =
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FIG. 4. The response y- is plotted as a function of the
modulation strength g for the modulation frequency of 1545
Hz. It appears that there is a sudden onset of strong re-
sponse to the island motion at the modulation amplitude of
ge ~ 0.0006.
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0.0006 +0.0001, where g. denotes the critical modulation
amplitude. Since the modulation frequency of 1545 Hz
is much smaller than the island frequencies of 2160-2720
Hz, depending on the energy of the torus, the response
can be expressed as a linear superposition of the partic-
ular and the general solutions of the linearized Eq. (21).
Assuming that the initial phase space coordinates of the
trapped bunch were located close to the center of the
island, the maximum response becomes

- 2 X 4vnq

YaR —
Vizsland(’!/J‘l) - Vrzn

(23)

where the factor of 2 arose from the linear superposition
of two solutions (see, e.g., [3]). At the modulation am-
plitude of ¢ = 0.0006, the maximum phase amplitude s
can become large and therefore particles can be driven
out of resonance islands.

C. Comparison with theoretical models

Following Ref. [6], a dynamical system becomes chaos
when both of the following conditions:

n> |1_—€§_2_|, (24)
n< % (25)

are satisfied, where the dimensionless parameters, £ and
7, are given by

Vm mq

= , =
Visland

Visland

The parameter 7 is equivalent to the phase modulation
amplitude a of Eq. (22) at vy, X Visland- The condition
for chaos given by Eq. (24) is identical to Eq. (23) with
an amplitude independent island tune and a maximum
phase amplitude of ¢ = 2 rad. The condition of Eq. (25)
corresponds to the overlapping of modulation sidebands.
On the other hand, Ref. [7] obtained the threshold for
the chaotic transition by imposing the stability condition
to the phase space maps along the separatrix trajectory.
The critical modulation amplitude is given by

2w iy
n> 7r£szL cos 76 (26)
Here wgy, signifies the critical width of the stochastic layer
[7], which is given by the relative energy deviation from
the separatrix torus.

Figure 5 shows curves for the critical 5 as a function of
£. The curve for Eq. (24) is marked with (a), the curve
for Eq. (26) is marked with (bl), (b3), and (b5) for the
stochastic layer width parameter wsy, = 0.1, 0.3, and 0.5
respectively, and the curve for Eq. (25) is marked with
(c). The experimental data points shown with square
symbols correspond to the critical frequency and strength
obtained from Figs. 3 and 4, i.e., ¢ = 0.000 86, f,, = 1200
Hz and ¢ = 0.0006, f,, = 1545 Hz. The data, shown
as circles in Fig. 5, were taken from Ref. [9], where the
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FIG. 5. The chaotic transition conditions are shown as
curve (a) for Eq. (24), as curves (b1), (b3), and (b5) for ws, =
0.1, 0.3, and 0.5, respectively, for Eq. (26), and as curve (c)
for Eq. (25). The horizontal axis in this figure is £ = —*m—

Vislan
and the vertical axis is n = r:;‘.’:. The square symbols co]rred-
spond to the data of transition point of Figs. 3 and 4, where
the island tune is taken as Viglana = 0.002 63. The data shown
as circles were taken from Ref. [9] with quoted island tune

range from 0.0053 to 0.0085.

range of the quoted island tune, from 0.0053 to 0.0085,
was assumed. The uncertainty (error bar) of these data
points is relatively large due to the uncertainty in the
island tune, which has not been measured directly in the
experiments of Ref. [9].

Note here that £,7 parameters of this experiment
(square symbols) are lying on a curve with a stochas-
tic width of wgy, = 0.3. It is possible although fortuitous
to relate the critical stochastic width of wsy, = 0.3 to the
energy difference between the tori of the SFP and the
UFP, i.e.,

Esrp — Eyrp 4|g|
= ~ 0.3. 27
Esrp |a| +2|g] (@7)

For a parametric resonant system with phase modu-
lation [Eq. (21)], the amplitude response increases dra-
matically when the bifurcation frequency of the system
is encountered [3,4]. The bifurcation frequency corre-
sponds to the onset of generating a pair of SFP and UFP
beside the original SFP within the original island of the
nonlinear resonance. For each additional SFP, there is an
associated secondary island. If the modulation amplitude
q is increased at a constant modulation frequency below
the bifurcation frequency, the size of the outer secondary
island increases accordingly. Therefore particles in the
nonlinear resonance island will be driven out of the inner
secondary island and will travel along the separatrix of
the nonlinear resonance. Similarly, when the modulation
frequency increases toward the bifurcation frequency, at
a constant modulation amplitude 7, the secondary sepa-
ratrix created by the tune modulation will cut through
the center of the unperturbed nonlinear resonance island.
Thus it is useful to characterize the transition to a large
response function by the onset of the bifurcation transi-
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tion in the parametric resonant system. The bifurcation
tune parameter & is related to the modulation amplitude
parameter 7 by [2—4]

& =1 —(4m), (28)

which is shown as the curve marked (d) in Fig. 5. Note
that Eq. (28) is valid only near and below the island fre-
quency. Equation (28) seems to imply that the tolerable
modulation amplitude is zero at £ = 1. This is, how-
ever, not the case due to the nonlinearity of the system
in Eq. (21). At the bifurcation frequency, the stable fixed
point amplitude is 14 srp = 2(47)'/3 and the amplitude
of the SFP at £ = 1 becomes (87)'/3. Therefore there is
a minimum modulation strength 7. given by

(e=1),

[o <R e}

Ne 2

so that the resulting response amplitude is large, i.e.,
P4 ~ c/3. In the region £ > 1, i.e., the modulation fre-
quency is higher than the island frequency, there is only
one SFP within each nonlinear resonance island. The
critical tune modulation amplitude may be given by ei-
ther Eq. (23) or Eq. (26). More measurements of the
critical modulation amplitude as a function of modula-
tion frequency are necessary to compare to these theo-
retical models.

IV. CONCLUSION

Effects of the tune modulation on the motion of par-
ticles trapped in resonance islands were studied experi-
mentally. The beam was observed for the first time trav-
eling from near the center of resonance islands toward
the separatrix of the Hamiltonian due to the betatron
tune modulation. We characterized the response of the
trapped particle by N%’ where N, is the number of orbital
revolutions that the beam remains trapped inside a reso-
nance island. The dynamics is similar to that of the syn-
chrotron motion with an equivalent phase modulation.
The response, when plotted as a function of modulation
frequencies, displayed characteristics of a parametric res-
onant system [3,4]. The measured response, when plotted
as a function of the modulation amplitude, exhibited the
existence of a critical modulation amplitude, where par-
ticles can easily be driven out of the resonance islands.
These critical modulation amplitudes and frequencies are
compared with chaotic transition conditions of Refs. [6,7]
and the bifurcation condition of Ref. [4]. Further exper-
iments with a detailed exploration of phase space maps
as a function of modulation frequency at a smaller mod-
ulation amplitude, e.g., an equivalent phase modulation
amplitude of a < 0.5, and at higher modulation frequen-
cies, where theoretical models differ greatly, would be
valuable.

It is generally known that the stochasticity begins at a
region of phase space around unstable fixed points. How-
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FIG. 6. The Poincaré maps of three tori in third-order res-
onance islands are plotted in the right figure and the cor-
responding square root of spring constant “Vigiang,” for the
betatron phase oscillation as a function of the action of each
torus, are plotted in the left figure. The phase space coordi-
nates are X = /I costy and P = —\/f siny. The parameters
of the resonance Hamiltonian are § = 1/2000, o = —1/1000
(r mmmrad)~', and g = 1/3000 (7 mm mrad) /2.

ever, the particle beam cannot easily be tracked experi-
mentally along the separatrix due to the fact that parti-
cles in the beam bunch can split into small groups leading
to a strong decoherence for the centroid of the charge dis-
tribution. However, careful experimental observations of
Poincaré maps inside the island may lead to further in-
sight for theoretical studies. Since the equation of the
phase oscillation, in the presence of betatron tune modu-
lation, differs in details from that of the driven pendulum
equation, more rigorous theoretical treatment is needed.
Numerical simulations in many realistic dynamical sys-
tems are also needed. These studies can help to gain
theoretical insight for rigorous treatment of dynamical
systems.
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APPENDIX: AN EXAMPLE
FOR THE THIRD-ORDER RESONANCE

We consider an illustrative example for the third-order
resonance with parameters § = 1/2000, « = —1/1000
(r mmmrad)~! and g = 1/3000 (7 mm mrad) /2. The
corresponding SFP and UFP are located at Ispp = 1
(7 mmmrad), Iyrp = 0.25 (m mm mrad). Three tori and
their corresponding “island tune” vjgjana = VG, for the
phase oscillations of )3 are shown, respectively, in the
right and the left frames of Fig. 6. Note here that the
spring constant for the phase oscillation varies by about
a factor of 4 for a torus near the separatrix. The island
tune at the SFP is 0.0015.
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